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VARYING BOUNDARY CONDITIONS

WITH LARGE DIFFUSIVITY

by

Jack K. Hale and Carlos Rocha

ABSTRACT

For systems of semilinear parabolic partial differential equations

on bounded domains with large diffusivity and homogeneous boundary

conditions close to the Neumann conditions, we associate a system of

ordinary differential equations (ode's) from which the dynamics of the

original system can be inferred. Small perturbations of the Neumann

case produce large perturbations in the ode's with corresponding effects

on the dynamics of the system. The same theory is valid for functional

differential equations. Applications are considered in models for

* control by genetic repression of biological material in cells.



I. Introduction.

Consider the system of parabolic partial differential

equations (PDE)

(1.1) au/at = DAu + f(u); x E s

(1.2) u/an = E(x)u; x E an

where u E o a IRn, n < 3, is a bounded open set with an

smooth, D = diag(dl,...,dN), E - diag(el,...,eN) where each

d. > 0 is constant and each ej: an -R is continuous. Also,

N N 11suppose that f: IN - N  is a Cl'l-function; that is, is con-

tinuous and has a Lipschitz continuous first derivative.

Our objective is to study the behavior of solutions of (1.1),

(1.2) when D-1 , E are small; that is, the boundary conditions

are close to homogeneous Neumann conditions and the diffusivity

is large.

To state the results, we need some terminology. If X = L2(PPN),

D(A) = { W E W2'2(,J N): a /an = E; on aQ}

then At = -DA6 is a sectorial operator and one can define the

fractional powers A of A, 0 < c. and the space X' = D(Aa) with

the graph norm. If 3/4 < a < 1, then X0 c W '2(p,lRN) n L'( ,1N)

f Z

" U -pe W , ° . , p . , - o - . - - ,. . . . , - . , . . . .- . - , . . . . . % . , - , . . , -
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with continuous inclusion. One can then show that (1.1), (1.2)

defines a local C1'1-semigroup TD,Et on X for 3/4 < a < 1

(see, for example, Henry [9,p.75]).

For any set B a X0, the w-limit set w(B) of B is defined

as w(B) - nT>O C1 Ut> TD,E(t)B. A set Bc X0 is said to be in-

variant if, for any 0 F B, one can define TD,E(t)¢ for t E P

and TDE(t) E B for t C R. A set Ac Xa  is said to be a

compact attractor for (1.1), (1.2) if A is compact, invariant and

there is a neighborhood B of A such that w(B) a A.

Under the assumption that the ordinary differential equation

(1.3) du/dt = f(u)

has a compact attractor A, it was shown in Hale [5] that A is a

compact attractor for (1.1), (1.2) if E - 0 provided that d> is

sufficiently large, where d = min(d1,... ,dN) and X is the first

eiqenvalue of -t with homogeneous Neumann conditions. In other words,

(1.1), (1.2) with E = 0 behaves qualitatively as the ODE (1.3) if

dx is large.

We will obtain an appropriate generalization of this result when

D-1, E are small; that is, the qualitative properties of the flow for

(1.1), (1.2) can be determined from an ODE under certain hypotheses.

At first, it is instructive to guess the appropriate ODE. If

u(t) =- I u(t,x)dx and u(t,x) is a solution of (1.1), (1.2),

S............ ........ '.. ... '. ... .-- . . .
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then, by integrating (1.1) and using the boundary conditions (1.2),

one obtains

C i= D 1J) E(x)u(t,x)dx + lV 1J f(u(tx))dx.

If we assume that

E(x) = E(x,D),

(1.4) Dj~' 1E(x) - E(x), E(x) continuous,

fanE(x)dx=

and u(t,x) - iu(t) - 0 as d = min(d 1,... ,dN) -0, then v = limd

u satisfies the (ODE)

(1.5) dv = v + f(v) - g(v,)
dde

The "perturbation" E(x,D) in the boundary conditions leads to the

perturbation v in the vector field f(v) in (1.3).

Under the assumption (1.4), there are N eigenvalues xl(D),

...x N(D) of DL with boundary conditions (1.2) and corresponding

unit eigenfunctions ¢I(D),...,¢N(D) such that

AD = diag(>l(D),.. N(D))

CD = (¢l(D)"".,N(D)) - 1s2- 1, I = identity
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as d . Decompose X as

X OL U -LrL01

u a = Dv: v E RN

UL = E, C XO: <c,>=O for all E C U}

where <,i = T(x)t(x)dx.

If u(t,x) is a solution of (1.1), (1.2) and

(1.6) u(t,x) tDv + w(tx), w(t,.) E U"L

then

(l.7a) dv/dt = AD v + J ,D f(OD v+w)

(1.7b) aw/at = DAw + f(e;D v+w) - ODfqD f(%D v+w) on

,w/an = Ew on an2

The main result of the paper is the following.

Theorem 1.1.

Supoose D,E(.,D) satisfy (1.4) and the ODE (1.5) has a compact

Nattractor A.f with V c IN  beinq a neighborhood of A.,f such that

.i

4 c°- -s ..* * a ' . . . . " _ -. " , , t + .
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w(V) c A~f Then, for any neighborhood W of A,,f with CkW c V

there is a constant do > 0 and a C1-function h: W I- D: d >do

U1such that h(v,D) -+0 as d-a and the set

*(1.8) M D = fu= 4,D v + h(v,D), v E W}

is an exonentially asymptotically stable invariant manifold for

(11,(1.2). Furthermore, the flow on this manifold is given by

u(t,x) = D(x)v(t) + h(v(t),D)(x) where v(t) is a solution of

the ODE

*d f

(1.9) dvDd A v + h(v,D)) -~ A v + Gk'D,v)

The proof of this theorem is given in Section 2. It is

interesting to note some implications of this result.

Since A D %~ -~ lQJK ,h(v,D) -~ 0 as d - ,relation (1.6)

shows that the averaqe u of u approaches IQ2I v and v satisfies

the ode

(1.10) dv/dt = v + jal f(IQJI1v)

A rescaling of v ., j~j;1v yields (1.5).

The compact attractor Af is upper semicontinuous in the

* Hausdorff metric with respect to C -perturbations of the vector
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field cv + f(v) (see, for example, Hale [6]). The flow defined

by (1.9) is equivalent to the flow defined by rescaling v - I ! v.

. The new vector field ADv + Inj"G(D,In approaches the vector

field g(v, ) = v + f(v) in the C1  topology in W as d

Thus, (1.9) has a compact attractor A in W and limd_.AD,,f

cA as d - . If the flow of (1.5) on A is structurallyC S Cf

stable in W, then limdAD,,f = Af and the flow defined by

(1.9) is equivalent to the flow defined by (1.5) in W. This is

summarized in

Corollary 1.2. For d > d0 , equation (1.9) has a compact attractor

A in W, lim A c A If the flow defined by (1.5)
Dq W dlme AD,;, fC f* __________

is structurally stable on A in W, then the flow defined by

(1.9) is structurally stable on AD, , in W and is equivalent

to (1.5) in W.

The following observation is also important. Although the

perturbation E(.,D) - 0 as d - , the behavior of the flow de-

fined by (1.1) cannot be considered as a small perturbation of the

flow defined by Neumann boundary conditions. In fact, the matrix

can be very large and therefore the flows defined by (1.3) and

(1.5) can be very different. An illustration will be given in

Section 3. The flow defined by (1.1) is close to the flow defined

by the equation
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au Du + f(u), X Et

D- I JQiar 1  u = 0, x E 9
an

for d large. The similarity with Neumann boundary conditions is

that the eigenfunctions corresponding to the eigenvalues close to

. are apDroximately constant functions for d large and so the

average of u satisfies (1.5).

Equation (1.1) may also contain other physical parameters which

vary over some set. In such a case, equation (1.5) would also contain

these parameters and the flow may undergo various types of bifurcations

as the parameters vary. It would then be of interest to relate these

bifurcations for the limit equation to bifurcation of (1.9) for the

flow of (1.1) on the attractor. For example, suppose f = f(u,r),

r E R, and the limit equation (1.5) with f replaced by f(u,r) has

an attractor A ,r which is a point v0  for r < 0 and there is a

generic supercritical Hopf bifurcation at r = 0; that is, the attractor

A;,r is a disk for r > 0 with the boundary of A;,r being a stable

periodic orbit which attracts all points on A,r except the equilibrium

point. Equation (1.9) will also contain r,

(1.9)r dv/dt ADV + G(D,v,r)

where AD -* ;, G(D,v,r) - f(v,r) as d -* uniformly for Ir< r

and v E V for some fixed r0 > 0 and neighborhood V of U;r'<r A, r .
I -0~
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This convergence will be in the Ck topology if f is Ck'l.

Furthermore, the attractor AD,4, r satisfies limd AD,,,r cA4,r,

I ! rO. These remarks are immediate consequences of the proof of

Theorem 1.1 below. Therefore, If we fix d > do, with do sufficiently

large, the one parameter family of flows defined by the vector fields

in (1.9) r, Irl ro, have the property that there is an i(D), IF(D)I

< ro, i(D) - 0 as d - , such that the attractor A D,4, r  is a point

for -r0 <r < r(D) and is a disk for i(D) < r <r0  with a generic

Hopf bifurcation occuring at i = i(D). The same remark applies to

other elementary bifurcations that occur in one parameter families.

It will be apparent below that the proof of Theorem 1.1 is easily

adapted to the following situation. Let A = A(x) be a positive

definite, continuous nx n matrix function uniformly for x E Q and

let uT be the transpose of an N-dimensional column vector. Consider

the equation

ut = D[div AuT]T + f(x,u) in

(1.10)

[AvuT]Tn = E(u) in

where n is the outward unit normal vector to Q, f E C I'I( x IR N N)

and

E(u) e(xy)u(y)dy

(1.11) e(x,y) diag(el(x~y),...,eN(xy))

D! "- e , .
J -2C
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where e, e are continuous on aP x a. Let

(1.12) F(u) = Ii 1 f f(x,u)dx.

Then Theorem 1.1 is valid with (1.4) replaced by (1.11), (1.1),

(1.2) replaced by (1.10) and (1.5) replaced by

(1.13) u= Cu + F(u)

It will be clear also form the proofs given below that Theorem 1.1

remains valid even if the equation (1.1), (1.2) is a functional dif-

ferential equation; that is, f: C([-r,O],P N) N R N where r > 0 is

a given constant. Also, one can consider the equation (1.1), (1.2)

coupled with an ordinary differential equation, and obtain the version

of (1.5) coupled with the same ordinary differential equation. This

is illustrated in Section 4 for a problem in genetics of Busenberg

and Mahaffy, El). One could also have a functional differential

equation in (1.10).

.. . . . .'
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2. Proof of Theorem 1.1.

We will use the notation introduced in Section 1. For a

fixed constant b > 0 and a given continuous function a: a -R,

consider the eigenvalue problem

ba 4 a~ in n

(2.1)

Sa,,/an =-a(x)t on an.

Suppose a(x) = a(x,b) and

b a(xb) - B(X) as b

i (2.2)(2.2)i(x) continuous Injl-l1 = .

The smallest eigenvalue xl(b,a) of this problem is characterized

by the variational principle (see Courant and Hilbert [2 ,p. 398])

(2.3) -Xl(b,a) = min{j blv1 2dx + bf a 2dx: 2dx = 1}
J.Q ja.Q V 1

Also, if dl(b,a) minimizes this functional, then cl(b,a) is an

eigenfunction corresponding to X1 (b,a).

Lemma 2.1. If (2.3) is satisfied, and )k(b), k = 1,2,... are the

eigenvalues of (2.1), then there are constants b > 0, v > 0 such that,

p0



limb xl (b) = -7

Xk(b) <-ub, k >2, for b > bO.

Also, there is a normalized eigenfunction el(b) such that

l (b) si- I as b -..

Proof: For any e > 0 there is a b0 > 0 such that b > b0  implies

sup Iba(x) - (X) < E

x

Taking u(x) = )o) , it follows from (2.2) that

< . l ba I~l(sa-B]) + a < ac

where K -- IaI.

The trace theorem for WI' 2() implies there is a constant co

such that

( 2 + f 2].
j D 6 < col~vI P~

If we let I * sunxlal(x)I and ¢l(b,x) be an eigenfunction for

x(b), 1(bl) =1, then

{,;A
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0 + EK >b J v 1
2 + b 0 2

'Io(
b fnIv.112 +. J,(ba -' + f O'2

> b -io( 2  Q +C) f 2

> [b - c0(I + c))J jvtij2 _ ( + E) Cof0 2

[b - C0 Q+1 )].sj 1 _ + )CO

Thus, for b > co(') + r), we have

I. 12 <+¢K + cO( + c) dgf cl

l b b- CO( + E) b-c2

Thus, [IV(b,.)!2 - 0 as b -. . Since the eigenfunction tl(b,x)

is a C2-function of x (see, for example, [3 ,4 ]), it follows that

-l(b,x) -' I.I-"  as b * uniformly in x E E2. From this, we con-

lude that f - C as b -. Thus, - - as b

". This proves the first part of the lemma.

The second eigenvalue x2(b) is characterized by the minimization

problem (2.2) with the additional restriction 0 - . Let

- X2(b)/b. Then

'=2(b)  min!. 7:2 + r a; 2: f 2 = 1 VlO;

-p

[°'.% '-'** ~**
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Suppose now there is a sequence b. - as j such that

p2(bj) o 0 as j - -. If 2(bi,.) is the corresponding eigen-

function, J 2 1, then, as above, one concludes that JV 212 . 0

and jol'l 0 as b -=. Thus, *2(b,.) - 0 as b - which
.a €2=I Tus hr2s n

contradicts the fact that = 1. Thus, there is a bo >0 and

a P > 0 such that u2(b) >v for b > bO . This implies that

-X2(b) > ub for b > bO . This completes the proof of the lemma.

Now let us consider the parabolic PDE

u/t = bAu in s2

(2.4)
au/;n -a(x,b)u in aQ

Let Y = L2(Rb),D(A) = { W2'2 (sl,J): /n = -a(x,b)- on apo

and A = -bAt, E D(A). Then

J(Au)(x)v(x)dx = b J vu(x).vv(x)dx + b Ja(xb)u(x)v(x)dx

for u E D(A), v E W1'2( , ) and A is formally self-adjoint.

It has a self-adjoint extension to W1'2(n,R) . Furthermore,

a(-A) consists of the eigenvalues of (2.1).

Let Ya, 0 < a < 1, denote the Banach spaces associated with

the fractional powers of A. Then (2.4) generates an analytic semi-

group e-At in Ya. For t > 0,

gropI""- ';.;- ,'' ."-.: 3'-'.'-3-'".;';'1'3-.- ;_3 ""''- "' ---•..L.;.'',"'' '.!. -.-."; :",. 4:
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e"At -  Ij (x+A)-1 ext dt

where r is a contour in the resolvent set p(-A) with arg x

±6 as jj -- - for some constant e E (v/2,n).

Let Xl(b) be the first elgenvalue of (2.1) and let el(x)

'= 1 (b,x) be the corresponding normalized eigenfunction. Let

>= 0 (x),p(x)dx and let

ya yq,yJ spY'

If u E Ya, let u v,1 + w, v = < 1,u>. If u is a solution of

(2.4), then

dv/dt = xl(b)v

aw/ t = bLw in n

and w satisfies the boundary conditions

(2.5) aw/at = -a(x,b)w on w.

Let us define A= b'IA as Aw = Aw with the boundary conditions

(2.5) for w E D(A) = D(A) n Yi. Then A is sectorial in Y1 , and,
C,

by Lemma 2.1, >(A) > . Using [9 ,Theorem 1.5.4] we have for w E Y"

• *''4.." .-'?.:=- ."-" -.-. 4';;;- .' -' :_ .-.. '-. .,",'. ":' "' "---" ...:-'
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le-'it w Iyet k t'ae'vtlwlL 2 , t > 0

le'Atwly _ k e'Ut jWj, 12 t > 0

where k can be chosen to be independent of b > bO. Then,

making the transformation t -. bt, we obtain:

le'Atwly < kI t- e'UbtIWI L2  t > 0

(2.6) J e'AtwjyC, < kl e'1ubtjwl t > 0

with k > kb- , for wE Y and 0 < < , b > b.

Let us now return to the full equations (1.1), (1.2) and

consider first the linear case f = 0. We are assuming that

lI-d 'Iej(di 1 x) -, ej(x), faej =j

for j = 1,2,...,N.

Let Y (d ) be the first eigenvalue of (2.1) with (b,-a(b,.))

= (djej(d ,.) and ¢1 (dr1 x) be a normalized eigenfunction and

> 0 such that the second eigenvalue x2 (d ) < -ldj if d > do.

If d = min(d1 ,... ,dN), then

,..o o. oO ~ .' , gg¢'o, \.o*.% 2, \.* . * %.•.. .. .. .;."*. ... , * .. .... -,...... %.., * ,,,~ . - . . ... .. .. .• ,, ,, ,
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AD as d-',

(2.7) A= diag(l(dl)... N(dN))

c diag( 1 ,,,, " N)

Let

:l(dl) 0 ... 0

0 1 (d 2) ... 0 def
(2 .8 ) 'D 0 [ e(d ) " " ", l (dN ))

0 0 ... ¢l(dN)

ii X= (ycl)N
Ia 

WI

and decompose XO as

-:. XCA = U U"L

C1

(2.9) U = = *D v: v E RNI

u". a  { ': <;,€> = 0 for all E U)

where <,:> = (x):(x)dx
oI
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If u(t,x) is a solution of (1.1), (1.2) written as (1.6),

then v, w satisfy (1.7). The equation

aw/at = DAw

aw/an = Ew on aa

generates an analytic semigroup TD(t) on U1 which from (2.6)

satisfies the estimates

]TD(t)WIu i- kt-a e'udtlw i '- t > O,

al 0IT D(t)WIu <- ke-ijdt IwI u ,  t > 0.

Under the hypothesis of the theorem, the equation (1.5) has

a compact attractor A ,f. As in [ 5], there is a Lipschitz continuous

Liapunov function V: 0-,R such that, for any v E RN and A, = A,

(i) V(v) = 0 if v E Ag

(ii) a(d(v,A )) _ V(v) < b(d(v,A )) where a(r) is

continuous, nondecreasing, a(r) > 0 if r > 0 and b(r)

is continuous, b(O) = 0.

(iii) V(1.5)(v) <-V(v) where

7 7, 5 %(S 5. : *'4 faSS .A. 4.> -:-.,-.--,"o'.*.-S..
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O(1.s)(vo) = Tlim +h [V(v(h,vo)) - V(vo))

with v(t,vO) being the solution (1.5) through v0  at t = 0.

For any c > 0, let Vc 
= (v E ]RN: V(v) < c}, Vc  C1 Vc .

From (ii), Vc  is compact for any c > 0. Assume now that 3/4 <

< 1 so that LO(O,]RN) is continuously embedded in XI. As in

Hale [5 ], we will show that, for any c1 < c, there are 6, n,

Sn 6> 0 and b0  such that v0 EV{ Vci 1wO I0  <6, b >b 0  imply

that the solution (v(t),w(t)) of (1.7) throuqh v0, w0  satisfies

u(t) D cDv(t) + w(t) E Wc for t > 0, where

def X
Wc f {u0  D vD0 + WO, v0 E Vcs w 1xc < n}.

Let u(t,-) be a solution of (1.1), (1.2) and let u(t,-) = CD(.)v(t)

+ w(t,), v(t) E ,N w(t, ) E UL. Then:

dv/dt = P(v,w)

(2.10) Dw/3t = Dw + Q(v,w) in sq

a/n = Ew on an

where

P(v,w) = vDv + [ D(x)f(D(x)v + w(x))dx
r

Q(v,w)(x) = f(D(x)v + w(x)) - D(x) cD(y)f(¢D(Y)v + w(y))dy.

* " *"**"'" -' -' "o'*q *'- *"*" '"- " " '"."%* ". ''" ". " % .*"- -""- -"%""" " .. " '"%.-.. . . . ".- . °.,". " ".-- "
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Transforming v - II v, and using the variation of constants

formula, we rewrite this as

dv/dt = Cv + f(v) + [EoI'VP(Int v,w) - Cv - f(v)], v(O) =v

(2.11) t

w(t) = TD(t)wO + TD(t-s)Q(IiI31vw)ds

Since a > 3/4, € E Xa implies ¢ E L7(P,P N) and there is a

constant k such that IL< kIjx. Hence, there is an n > 0

such that v0  Vcl and 1wOxa < n imply Vo + Wo(x) EVc for

all x E R. Next, observe that

I1(,1"P v,w) - cv - f(v)I = -

+ Ior [SDf( DIQ1 v + w) - 1fl f(v+w)]

+ II 1[f(v+w) - f(v))I < I + Mcw LW

-MckIWx + 11.

where Mc = sup{lf'(v)l: v E Vc} and 0 = (d)- 0 as d-,.

In the same way, we obtain

o(H v,w(x))I (f(D(X)I I~v+w(x)) - f(v+w(x))!

+ lf(v+w(x)) - f(v)I + 1V(X)fo f(eDV+W) - I. f(v+w):
D D J
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+ If(V~w) f(v)I <_2n + 2MC wI0

< 2MckIwI 01+ vl?-

and

IQ( lijIv,w)i IX:<2MksiI IwI + +J

where vJ2 'J M.2 d -~ 0 as d -~ -.

Then, for v(t), w(t) satisfying (2.10), if V(S) E VCl
fw(s)j < n for 0 < s < t. relations (2.11) imply that

(v(t)) < -V(v(t)) + k 2 11QII"P(InIv w) f (v

< -V(v(t)) + k 2kMcl!' + k 2 'l

z(t) < k 1 e- (.c)dt z(O) + 2I~1P,14Ck klft(t-s)-3e &.. )d(t-s s)z(s)ds

+ k ' e dotf t(t-s)-'e-'Od(t-s) ds

k e(L C)dt z(O) + 2iI~kl1kM CL(..d)a- 1y(t) + k J2 L(;d)ldd

*where k2is the Lipschitz constant for V on V C, 0 <

z(t) =jw(t)l e adt, y(t) = sup~z(s), 0 < s < t) and L =~s-:'e-(l--'t)sds.

Choosing d > d0  such that I 1- 21Vjk k M L(lud >~ >0, we have

1 cdt
yMt) k1  [ z(0) + 2e J ]

/r41
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where ' 2 L( d)-l 2 " This implies

(2.12a) jw(t)x < k 1 e-dt JwOj x + '2

If v(s) E Vcl and jw(S)Ixa < n for 0 < s < t, we also have:

(2.12b) (v(t)) < -V(v(t)) + k2 (kMcn + Vl).

Let V(v) > D > 0 for v E v-c-.VCl, and choose n > 0 and d0  so

that:

P - k2(k Mcn + "2) > 0.

Then choosing 6 and d > d0  so that

k1e-(6 + 2 ) < n9

relations (2.12) imply that, if v0 E Vcl, 1w01 I < 6, then v(t) E Vc

lw(t) f < n for all t > 0. This finishes the proof of the claim.

Now let A denote the following subset of U:

A = {Dv : v E Ar f.

Then B def {u0 = ,DV0 + W0 9 V0 E Vc 1wOx1 < 6} is a bounded

oc 1

neqbrodo ndtepstv eiobt•~B si
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and is precomDact. Moreover, the estimate (2.12a) implies that,

if d is sufficiently large, there exists a neiqhborhood N(A)

such that B c N(A) and the w-limit set w(B) of B satisfies w(B)cv(A),

W(B) = tPO Ci TD,E(t)B. Then, by the results in [7 , theorem 5.3],

we obtain the existence of a compact attractor AD in N(A).

We want to prove that AD is a manifold which is essentially

thesame as A,,f. To do this, we construct a local integral manifold

w = h(v,D), v E Vcl of (1.7). If one extends fV C: V "- IRN  to

all ]N  in such a way as to obtain a uniformly cl'l(lRN, RN) function,

the referred to integral manifold must satisfy the differential integral

equation

(2.13) dv/dt = P(v,h(v D)), v(O) =v

0
(2.14) h(voD) = T D(-s)Q(v(s),h(v(s),D))ds

where v(s) = v(s,voh) is the solution of (2.13) through vO. In

a more or less standard but technical way (see, for example, Henry

[9 ] for PDE's and Hale [8 ] for ODE's), one uses the contraction

mapping on an appropriate set of Cl'l(JRN ,UTo) functions h(.,D) to

show that do may be chosen large enough so that (2.13), (2.14) has

a solution h(v,D) for d > do. Restricting to v E Vc we obtain

the positively invariant manifold

MD f{u =.Dv + h(v,D), v E Vcl

.5o

,.°

.o

.-. y..- -
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Moreover, h(v,D) and its derivative approach zero as d -, the

manifold MD is exponentially asymptotically stable and the flow

on it is given by (v(t),h(v(t),D)) where v(t), v(O) v0 EV

is a solution of the ODE (1.9). Since AD - and OD - I I'l 11I

it follows that the vector field in (1.9) appropriately rescaled

(v 4 Ilsi v) uniformly approaches g(v, ) - v + f(v) in (1.5).

Thus,equation (l.9)has an attractor BD in V cl The attractor

A,,f of (1.5) isupper semicontinuous (see [ 7]) and so lia BD
d-

c A The attractor AD for (1.7) is given by

AD {u: u = Dv + h(v,D), v E BD}

Since h(v,D) - 0 as d 4 w, this completes the proof of Theorem 1.1.

J

!-. ~ *-I .
I ,_ _
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3. A scalar example in one dimension.

Consider the scalar equation
0d*

(3.1) au/at = duxx + f(u), 0 < x <1,

with the boundary conditions

ux - cU = 0 at x 0

S(3.2)
u x + ciu= 0 at x = 1

where d > 0 and j= Cj(d) are constants such that

(3.3) d cj(d) - j = 0,1, as d

The equation corresponding to (1.5) is

(3.4) dv/dt =-(N0 + c1)v + f(v)

Theorem L.1 asserts that, if (3.4) has a compact attractor

A,,f, then (3.1) has a compact attractor Ad if d > do, d0  suf-

ficiently large. Furthermore, if the flow for the scalar equation is

structurally stable, then the flow on Ad is structurally stable and

is equivalent to the one on A. f, The attractors Ad and A ,f
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are close after A is appropriately embedded inthe function

space.

The purpose of this section is to indicate how the perturbed

boundary conditions affect the flow on the attractor. To do this,

let us impose some additional conditions on f which will ensure

that (3.4) has an attractor for all C0' 1" More precisely, suppose

that there is a v0 > 0 such that

vf(v) < 0 for Iv >

~(3.5)
f(v)/v -- as lvI

For any O l' Equation (3.4) has a compact attractor Acf which

is an interval I,f= [ ] where a, S are the extreme zeros of

-( O + cl)V + f(v).

As a particular illustration suppose f(v) has five simple zeros

as shown in Figure 1.

Figure I

,"

.". . , . 4 4 4..,' *4 ': .' , :-:. .' - '.. .. * , f. -'. *. L-. -.- '.''.' 4 . "-.- ".4 "--' -.-- '
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For Neumann boundary conditions and d > do, the attractor AO,f

is the segment [al,a 5 ] and the flow on the attractor is the one

indicated in Figure 1. By varying c, it is clear that one can

obtain each of the attractors shown in Figure 2. The perturbations

in the boundary conditions induce large changes in the dynamical

properties of the system.

Figure 2

The flow on the attractor in the function space for (3.1), (3.2)

is the same as the ones indicated. However, the equilibrium points

are not constant functions. The exact equilibrium points are not easy

to compute since one must solve a nonlinear boundary value problem.

Fiqure 3 in the (u,u x)-plane indicates the approximate location of

these equilibria for the case £0 0 0, El > 0. The line L0 = k(UUx):

Ux - EoU = 0) and the line L1  {(U,ux): ux + lU 0.

e 4r e u0)

a'

S

,#

.'Z ''# a '. ,'- ,,W .,4 . . Ps . _, ," "."" ". "" , "", *," ," ", " "* -'-5" " ." - " "*--.- " * . . '- ' "- ' - . ",. .',W " '-
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4 Figure 3
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4. Two examples in genetic repression.

A simple model for genetic repression for control of biosynthetic

pathways in cells is to consider two compartments within the cell wall

separated by a permeable membrane (motivated by the work of Jacob and

Monod [10]). The first compartment w is regarded as a well mixed

compartment (the nucleus) where mRNA is produced. The second compart-

ment f consists of the cell in 0 minus the nucleus w and rep-

resents the cytoplasm in which the ribosomes are randomly dispersed.

It is in this region that

Figure 4

occurs the process of translation and consequent production of the re-

pressor. The communication between the ribosome sites where translation

occurs and the nucleus uses the process of diffusion in the cytoplasm

b :v ~ * .*. : ~ *;%*% .
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and transfer through the membrane bounding w. This model was dis-

cussed in the one dimensional case by Mahaffy and Pao [11) and in the

general case by Busenberg and Mahaffy [1].

Let ui and vi, i = 1,2 be respectively the concentrations of

the mRNA and repressor protein in compartments w and a-*w. The

nucleus w is considered as a well mixed compartment containing mRNA

whose concentration u, is transcribed from the gene at a rate depending

on the repressor protein vI. The mRNA leaves w and enters the cyto-

plasm f-w where it diffuses and interacts with the ribosomes. Through

the delayed process of translation, a sequence of enzymes is produced

which in turn produces a repressor v2. This end product diffuses back

to w where it inhibits the production of ul. The cell wall is a bar-

rier through which neither biochemical substance can pass (see Figure 4).

Let wi = col(ul,v1 ), w2 = col(u 2,v2), B - diag (b,,b 2), A =

diag(a,,a 2), D = diag(d l,d2), C = (c ), C21 - cO, c -0 otherwise,

diag(81,82), F(wl) = col(f(vl),O), where bi, a., d., Bi. co are

positive constants and f(v) is a decreasing function of v of the

form [l+v Y"1 where p > 2 is a constant and v E IR. Also, let

rI 10, r2 > 0, be given constants. With this notation the two com-

partment model is

dw1(t) 

dt F(w,(t-rl)) - Bwl(t) + A f [w2(ty) wl(t)]dy

(4.1)

w2 (t,x )

t DAw2(tx) " Bw2(tx) + Cw2(t-r 2 x), x E C>'.
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with the boundary conditions

| = aw2(t,x)w4.2) 2 xan = -Ow2(t,x) -wl(t)] on aw

aw2(t,x)(4.3) an n 0an

where n denotes the outward normal to ar with r = r- . 4
The flow defined by these equations leaves the region R+ =

{u. > O,v. > 0, j = 1,2) positively invariant (see Mahaffy and Pao

To apply the methods in the proof of Theorem 1.1, it is convenient

to make a transformation of variables in (4.1), (4.2), (4.3):

wl(t) -Wl(t) w2(tx) W2(t,x) + Wl(t).

The new equations are

dWl(t)

(4.4) -F(W (trl)) - BWI(t) + A W2(t,y)dy

5 aW2(tx)
(4.5) ~t DaW2(tx) - BW2(tx) " F(Wl(trl))

+ CW2(t-r2,x) + CWl(t-rl,x) - A f W2(ty)dy
0.

with the boundary conditions

S..* * .. .. ;
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an = -O 2(tx) on aw

(4.6)

i2 ( t ,x)
an o on aa.San =

We also need the space in which we will consider (4.4), (4.5), (4.6).

Let X = L2 ( C-,PI2 ) and Xa, 0 < a < 1 be the usual fractional power

space discussed before and associated with the Laplacian with boundary

conditions au/an = -su on aw, au/an = 0 on ap. Let X+, X+ be

the restrictions to the positive functions. Equations (4.4), (4.5),

(4.6) then define a C2-semigroup on C([-r,O],I2) - C([-r,O],X+).

As remarked earlier, the method of proof of Theorem 1.1 applies

to this set of equations when d = min(dl,d 2) is large and the sj

are functions of dj, ' so that

(4.7) !ql* lawid i 'i as d. cc

The resulting set of ordinary differential difference equations which

are the analogue of equation (1.5) are

dWl(t)
-t - " F(Wl(t-rl)) - BWl(t) + A1W2(t)

(4.8)

dW2(t)

dt " ";W2(t) " BW2(t) + CW2(t'r2)

+ CWl(t-r2) - AIW 2(t) - F(Wl(t-rl)

where : • diag(,. ). A - A :,

1*2
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Mahaffy and Pao [11] have shown that, for certain values of the

parameters in (4.8), there is a globally attracting stable equilibrium

point. Therefore, the attractor is a single point. They show also

that a stable generic Hopf bifurcation occurs at this equilibrium point

with the delays being used as the bifurcation parameter. Busenberg and

,' Mahaffy [1] show that (4.4), (4.5), (4.6), for the diffusion coefficients

large enough, must also have a generic Hopf bifurcation at approximately

the same value of the delay parameters. This is proved by comparing the

characteristic equations of the linear variational equations of (4.8)

and (4.4), (4.5), (4.6) near their respective equilibria.

Let us now discuss the implications of our theory to this situation.

Suppose ; is fixed and that (4.8) has a compact attractor P/

4 ;,r,,,r2
in C([-r,O], ). Under this assumption and, if (4.7) is satisfied,

one can conclude that (4.4), (4.5), (4.6) has a compact attractor

,, rl,r 2  in C([-r,O],Xa) if 3/4 < a < 1 and d >_d where d

is sufficiently large. Furthermore, the flows on the two attractors

are equivalent if the one on W' is structurally stable. Moreover,- ,rl,' 2

from the remarks made in the introduction, the Hopf bifurcation with

respect to the delays referred to above occurs on.. if d is
D,,,r, ,r2

sufficiently large.

The following fact is also true even though it will neither be used

here nor proved in detail. Since the only nonlinearity F(v) in the

equation is bounded together with its first and second derivatives, one

can choose a global Liapunov function V:C([-r,O],P ) I for the

of 

-.

Aw .w ~ .... :-. .- '''.-" '.. ' .''-"''"---," ""-"" .
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attractor _Q(l as a quadratic form outside a large ball. Thisc,r1 ,r2
permits one to obtain a global attractor for (4.4), (4.5), (4.6).

The second example that we are going to consider is again a model

in genetic repression with the same features as the one above, except

that now the process of production of the repressor takes place in the

membrane bounding the cell, looked upon as a third compartment 2. This

model is also discussed in the one dimensional case by Busenberg and

Mahaffy [1]. We need some new notation. Let ui,v i, i = 1,2,3 denote

the concentrations of mRNA and repressor respectively in the compart-

ments w, r and the outside membrane f. The compartments w and

are considered well mixed. Let wi = col(ui,vi), i = 1,2,3, and

B, A, D, C, 6, F be the same as above. Let also A = diag 2i

= diag( l,82) with aj, aj positive constants. Then the three com-

partment model is

"dWl Ct) -

dt = F(Wl(t-rl)) 
- Bwl(t) + A [w2(t,x)- wl(t)]dx

dt faw2(t(tx)

(4.9) wt - DAw2(t,x) - B w2(t,x), x E 9at2

dw 3(t)M + A w[w t)]dx
= -B w3(t) + C w3(t-r2,x) 2(t,x) w3(

with the boundary conditions

aw2 (t,x)

an = -aw 2(t,x) - wl(t)] on
(4.10)

aw2(t,x)an = ---w2(tx) - w3(t)] on a
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The flow defined by these equations leaves the region +=

{ui > 0, vi > 0, 1 = 1,2,31 positively invariant. Again, it is

convenient to make a transformation of variables in (4.9), (4.10)

in order to obtain homogeneous boundary conditions. Let H -

col(hl,hzjilji2) be the solution of the following boundary value

problem with nonhomogeneous boundary conditions:

tH=o, in r=r,,

+ on ar a c U a.

where 6 = diag(6 1, 2 ,6 1, 2 ), Y = col(SI, 2,0,0) on a. and 6 =

diag( I  Y = col(0,0,T l, 2) on ai. Then, let H - diag(hl,h 2),

FR= diag(fil,F]2) and introduce in (4.9), (4.10) the change of variables

w1(t) -* Wl(t), w2(t,x) -, W2(tx) + H(x)Wl(t) + H-(x)W 3(t), w3(t) - W3(t)

If we let G = H, G_= fanH, U= f[ fa 9, Af, I
and A1 - A, the new equations are

. ~ ~dW1  ,2d-I F(WI(t-rl))-(+AI-AG)Wl(t) + A Wt,y)dy + AG W3(t)

.W2 (t,x)

at = D'W2(t,x) - B W2(t,x)

• H(x){F(WI(t-rl))-(AI-AG )Wl(t)+Af W2(t,y)dy + AW 3 (t),
.'. ( 4 .1 1 )

*; - H(x){CW3 (t-r 2 )-(Al-AG. )W3(t)+Ar W2(t,y)dy + AG WI(t).
3 2)(t (Ti-AWN 2 1

dW 3(t) C W3(t-r2)-(B--A.)W3(t)+Aw 2 (t,y)dy + AGWI(t)

dt 3 2G-(Bt
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with the boundary conditions

aW2 (t,x) _
San 2 (t,x), on a.

aW 2(t,x)_
a~n W W2(t ,x ),  on an.

These equations define a C2  semigroup on C([-r,O],]R ) x X+ and

we can apply again the method of proof of Theorem 1.1 when d =

min(dl,d 2) is large and are functions of dj, j so that

(4.13) d Iawl Bj + I aj) .j as d -*

If we denote by = diag(Cly 2), G = 1r'H and G= IrK1if{H,

the resulting set of ordinary differential difference equations are

dWl (t) + A ,

dt F(Wl(tr)) " (B+A-AG)W(t W2(t) + A -W3 (t)

dW 2 (t)

dt = -( + B + GA1 +GAI)W 2 (t)

(4.14) - GF(WI(t-rl)) + [GA1 - GAG - MGA]Wl(t)

- GCW3 (t-r 2 ) + [Al - GA - GA ]W3 (t)

dW3(t)dt 3 CW('2) "(B+ 1AI' f)W3(t) + AW2(t) + AGOWI(t)
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2 6 n
This set of equations define a C -semigroup on ([-r,O],K) and

it is this flowthat should be compared to the one defined by the

equations (4.9), (4.10).

As remarked earlier, Busenberg and Mahaffy [1] considered (4.9),

(4.10) in one space variable and made a comparison to a set of equations

which they claimed would correspond to a well mixed model. These equa-

tions were analogous to but not the same as (4.14).

For equations (4.9) and (4.10) to correspond to the physical problem,

there must be some conservation laws and this imposes relationships be-

tween the constants A, T, s, . Once these conditions are imposed,

equations (4.14) in the one dimensional case take a simpler form. For

special values of the parameters, one obtains the equations of Busenberg

and Mahaffy [1]. The higher dimensional case always contains terms that

depend on the shape of the region in a significant way. It is obvious

that these equations need to be investigated in more detail.

JV
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